Co-variation of temperature and precipitation in CMIP5 models and satellite observations
نویسندگان
چکیده
[1] Current variability of precipitation (P) and its response to surface temperature (T) are analysed using coupled (CMIP5) and atmosphere-only (AMIP5) climate model simulations and compared with observational estimates. There is striking agreement between Global Precipitation Climatology Project (GPCP) observed and AMIP5 simulated P anomalies over land both globally and in the tropics suggesting that prescribed sea surface temperature and realistic radiative forcings are sufficient for simulating the interannual variability in continental P. Differences between the observed and simulated P variability over the ocean, originate primarily from the wet tropical regions, in particular the western Pacific, but are reduced slightly after 1995. All datasets show positive responses of P to T globally of around 2%/K for simulations and 3–4%/K in GPCP observations but model responses over the tropical oceans are around 3 times smaller than GPCP over the period 1988– 2005. The observed anticorrelation between land and ocean P, linked with El Niño Southern Oscillation, is captured by the simulations. All data sets over the tropical ocean show a tendency for wet regions to become wetter and dry regions drier with warming. Over the wet region (≥75% precipitation percentile), the precipitation response is 13–15%/K for GPCP and 5%/K for models while trends in P are 2.4%/ decade for GPCP, 0.6% /decade for CMIP5 and 0.9%/decade for AMIP5 suggesting that models are underestimating the precipitation responses or a deficiency exists in the satellite datasets. Citation: Liu, C., R. P. Allan, and G. J. Huffman (2012), Co-variation of temperature and precipitation in CMIP5 models and satellite observations, Geophys. Res. Lett., 39, L13803, doi:10.1029/ 2012GL052093.
منابع مشابه
Evaluation CMIP5 Models In Order to Simulate Rainfall by using a Combination of Precipitation data Network Aphrodit and Satellite Precipitation Persiann-cdr In Khuzestan Province
One of the most important Limitation General Circulation Models , Large scale are being simulation of climatic variables. So should With Various method are downscaled, The ability to have identified a study area. Choose a suitable GCM model for the study area Very important role In the simulation parameter (precipitation) is intended for future. In this research of CMIP5 Models Contains BCC-CS...
متن کاملPrediction of Prediction of Climate Change Impacts on Kharkeh Dam Reservoir Inflows with Using of CMIP5-RCP Scenarios
The objective of this research was to investigate the effects of climate change on precipitation and temperature parameters of Karkheh Basin and inflow to Karkheh dam reservoir. This was conducted by applying 21 GCM models under CMIP5 scenarios. The error indices of R2, RMSE and MAE models with the observed precipitation and temperature data were examined to find the appropriate GCM model, MRI-...
متن کاملEvaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region
1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...
متن کاملUse of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations
The tropospheric and stratospheric temperature trends and uncertainties in the fifth Coupled Model Intercomparison Project (CMIP5) model simulations in the period of 1979–2005 have been compared with satellite observations. The satellite data include those from the Stratospheric Sounding Units (SSU), Microwave Sounding Units (MSU), and the Advanced Microwave Sounding Unit-A (AMSU). The results ...
متن کاملPreparation of Superparamagnetic of Co0.5Zn0.5Fe2O4 at Room Temperature by Co-precipitation Method and Investigation of Its Physical Properties
Magnetic nanoparticles of cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) have been synthesized in a homogeneous aqueous solution at room temperature by co-precipitation method without any template and subsequent heat treatment. Synthesis of material is confirmed using XRD from the report of single phase polycrystalline ferrite material and also determined lattice constant. Atomic absorption spectrophoto...
متن کامل